If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (-2x2 + 9x2) + (8x + 3x) + (3 + -1) = 0 Combine like terms: -2x2 + 9x2 = 7x2 (7x2) + (8x + 3x) + (3 + -1) = 0 (7x2) + (8x + 3x) + (3 + -1) = 0 Combine like terms: 8x + 3x = 11x (7x2) + (11x) + (3 + -1) = 0 (7x2) + (11x) + (3 + -1) = 0 Combine like terms: 3 + -1 = 2 (7x2) + (11x) + (2) = 0 (7x2) + (11x) + 2 = 0 Reorder the terms: 2 + (11x) + (7x2) = 0 Solving 2 + (11x) + (7x2) = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.2857142857 + (1.571428571x) + x2 = 0 Move the constant term to the right: Add '-0.2857142857' to each side of the equation. 0.2857142857 + (1.571428571x) + -0.2857142857 + x2 = 0 + -0.2857142857 Reorder the terms: 0.2857142857 + -0.2857142857 + (1.571428571x) + x2 = 0 + -0.2857142857 Combine like terms: 0.2857142857 + -0.2857142857 = 0.0000000000 0.0000000000 + (1.571428571x) + x2 = 0 + -0.2857142857 (1.571428571x) + x2 = 0 + -0.2857142857 Combine like terms: 0 + -0.2857142857 = -0.2857142857 (1.571428571x) + x2 = -0.2857142857 The x term is (1.571428571x). Take half its coefficient (0.7857142855). Square it (0.6173469384) and add it to both sides. Add '0.6173469384' to each side of the equation. (1.571428571x) + 0.6173469384 + x2 = -0.2857142857 + 0.6173469384 Reorder the terms: 0.6173469384 + (1.571428571x) + x2 = -0.2857142857 + 0.6173469384 Combine like terms: -0.2857142857 + 0.6173469384 = 0.3316326527 0.6173469384 + (1.571428571x) + x2 = 0.3316326527 Factor a perfect square on the left side: ((x) + 0.7857142855)((x) + 0.7857142855) = 0.3316326527 Calculate the square root of the right side: 0.575875553 Break this problem into two subproblems by setting ((x) + 0.7857142855) equal to 0.575875553 and -0.575875553.Subproblem 1
(x) + 0.7857142855 = 0.575875553 Simplifying (x) + 0.7857142855 = 0.575875553 x + 0.7857142855 = 0.575875553 Reorder the terms: 0.7857142855 + x = 0.575875553 Solving 0.7857142855 + x = 0.575875553 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.7857142855' to each side of the equation. 0.7857142855 + -0.7857142855 + x = 0.575875553 + -0.7857142855 Combine like terms: 0.7857142855 + -0.7857142855 = 0.0000000000 0.0000000000 + x = 0.575875553 + -0.7857142855 x = 0.575875553 + -0.7857142855 Combine like terms: 0.575875553 + -0.7857142855 = -0.2098387325 x = -0.2098387325 Simplifying x = -0.2098387325Subproblem 2
(x) + 0.7857142855 = -0.575875553 Simplifying (x) + 0.7857142855 = -0.575875553 x + 0.7857142855 = -0.575875553 Reorder the terms: 0.7857142855 + x = -0.575875553 Solving 0.7857142855 + x = -0.575875553 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.7857142855' to each side of the equation. 0.7857142855 + -0.7857142855 + x = -0.575875553 + -0.7857142855 Combine like terms: 0.7857142855 + -0.7857142855 = 0.0000000000 0.0000000000 + x = -0.575875553 + -0.7857142855 x = -0.575875553 + -0.7857142855 Combine like terms: -0.575875553 + -0.7857142855 = -1.3615898385 x = -1.3615898385 Simplifying x = -1.3615898385Solution
The solution to the problem is based on the solutions from the subproblems. x = {-0.2098387325, -1.3615898385}
| 8+2.4(2)= | | 56+355= | | (n+8)=4n+32 | | 9/(8x^2)y-13/4xy | | -5(m+9)+7=3m+12 | | 2x-(2x+12)=-12 | | 4/175 | | 5x^2-5x=6 | | 65-(5x+13)=5(x+6)+x | | -6x^2-4x=-11 | | (6y^2-6y-5)-(2y^2+3)-(5y+5)= | | a=a-a^2+1 | | v+12=u | | a=0.9*a | | a=0.9*4 | | 6v=u | | 5=9x/1 | | -5(3t-2)+9t=5t-2 | | 8=6n-1 | | 4b+6=2-b+b | | 5x+13=5+4x | | 9x-(8x+5)=7x-41 | | -30(a-32)-29=43a+10 | | 9=v+u | | 8800=x^2+30x-7000 | | 1=7c+12 | | 6x+38= | | (3x^2+2x-7)+(2x^2+8x+15)-(5x^2-13)= | | X^4(x+2)=0 | | Xy+y=110 | | 28x-3y=-180 | | 4x+80=600 |